Mass Spectral Studies of Some Dithioethers and Diamine-Dithioethers

C. A. McAULIFFE*, F. P. McCULLOUGH, R. D. SEDGWICK

Departments of Chemistry of Auburn University, Auburn, Alabama, U.S.A. 36830, and of the University of Manchester Institute of Science and Technology, Manchester M60 1QD, U.K.

and W. LEVASON*

Chemistry Department, University of Southampton, Southampton, SO9 5NH, U.K. Received July 28, 1977

The mass spectra of bis(phenylthio)methane, 1,2bis(phenylthio)ethane, 1,3-bis(phenylthio)propane, 1,6-bis(phenylthio)hexane, 1,8-bis(phenylthio)octane, cis-1,2-bis(phenylthio)ethylene, o-phenylenebis-(phenylthioether), some methyl-substituted analogues, and some tetradentate diamine-dithioethers are reported. The fragmentation patterns are illustrated and discussed with respect to differences between the ligands and the fragments derived from different ligands. The completely aliphatic ligands exhibit a complex fragmentation of α - and β -cleavages with and without hydrogen atom migration. A number of novel sulphur- and nitrogen-containing heterocycles have been detected.

Introduction

As part of a study concerned with the effects of altering interdonor linkages in bi- and multidentate ligands upon the spectra and structure of their coordination complexes we have examined the mass spectra of several series of ligands [1-4]. In a previous study the fragmentation patterns of several tetrathioether ligands were discussed [5] and here we report the spectra of structurally similar diaminedithioether ligands and of a series of dithioethers. In addition to their intrinsic interest the fragmentation of the dithioethers under electron impact have been studied to provide a comparison with the way these ligands fragment in S-dealkylation reactions when coordinated to various metal ions. Thus, the series of dithioethers was chosen to vary interdonor linkages in as systematic way as possible whilst retaining methyl or phenyl terminal groups. The mass spectra of thioethers, R₂S [6, 7], disulphides [8] and a comparison with some dithioethers [9] have been published.

Experimental

The syntheses of the diamine-dithioethers have been previously published [10]. The dithioethers were obtained by literature methods or by routes which will be published elsewhere, and were purified by recrystallisation or fractional distillation as appropriate.

Mass spectra were obtained using an A.E.I. MS902 mass spectrometer at 70 eV linked to a DS30 Data System.

Results and Discussion

Phenyl-substituted Dithioethers

The prominent ions in the fragmentation patterns of bis(phenylthio)methane, (I), 1,2-bis(phenylthio)ethane, (II), 1,3-bis(phenylthio)propane, (III), 1,6bis(phenylthio)hexane, (IV), 1,8-bis(phenylthio)octane, (V), 1,12-bis(phenylthio)dodecane, (VI), *cis*-1,2-bis(phenylthio)ethylene, (VII), and *o*-phenylenebis(phenylthioether), (VIII), are listed in Table I.

The spectra of both (I) and (II) show moderately intense parent peaks and the base peaks are the products of α -cleavage of the backbone (M-SPh). The fragmentation patterns become more complicated with increasing backbone length. Thus, for (III), (IV) and (V) the intense parent ions undergo α cleavage with and without hydrogen migration (M-PhS and M-PhSH), and (III) and (IV) also show peaks due to β -cleavage (M-PhSCH₂). Progressive loss of $C_2 H_4$ from the alkane backbones is also indicated for the longer chain ligands. For (III) and (IV) the base peak is the product of β -cleavage, PhSCH₂, but for (V) the observed base peak is composed of both PhSH and C_8H_{14} (Scheme I). The spectrum of (VI) is fairly similar except that the base peak is PhSH. In all these spectra other important peaks observed correspond to PhSH⁺, PhS⁺, C₇H₇⁺(probably benzyl, $PhCH_{2}^{*}$, rather than tropylium [5]) and CHS^{*} (m/e = 45). The long backbones in (IV), (V) and (VI) also produce the expected alkane fragmentations, only the most important of which are shown in Table I. It is interesting that, in marked contrast to Group VB ligands [1-3], these thioethers show no tendency to eliminate the backbone and produce

^{*}Address correspondence to these authors.

m/e	I%	Fragment	m/e	I%	Fragment
PhSCH ₂ SPh, (I)			Ph'S(CH ₂) ₆ SPh, (IV) (cont.)		
233	25.5	$C_{13}H_{12}S_2$	83	38	$C_{6}H_{11}$
123	100	C7H7S	82	40	C6H10
110	12	C ₆ H ₆ S	77	18.5	C ₆ H ₅
109	13	C ₆ H ₅ S	55	71.5	C4H7
91	4	C_7H_7	45	43	CHS
77	22	C6 H5			
65	9	C5 H5	PhS(C	H ₂) ₈ SPh,	(V)
51	14	C4H3	330	58	$C_{20}H_{26}S_2$
45	50	CHS	221	21	$C_{14}H_{21}S$
			220	9	C14H20S
PhSCI	$H_2 CH_2 SP_1$	ı, (II)	193	0.5	$C_{12}H_{17}S$
246	25	$C_{14}H_{14}S_2$	165	3.5	$C_{10}H_{13}S$
137	100	C8H9S	151	1.5	C9H11S
135	9	C ₈ H ₇ S	137	8	C8H9S
123	11	C7H7S	136	3.5	C ₈ H ₈ S
110	10	C ₆ H ₆ S	135	6.5	C ₈ H ₇ S
109	50	C ₆ H ₅ S	123	84	C ₇ H ₇ S
91	4	C_7H_7	111	18.5	C_8H_{15}
77	9.5	C ₆ H ₅	110	100	C ₆ H ₆ S &
65	13	C5 H5			$C_{8}H_{10}$
51	8	C ₄ H ₃	109	39.5	C_6H_5S
45	11	CHS	91	7	C_7H_7
			82	12.5	С 6 Н9
PhSCI	H ₂ CH ₂ CH	₂ SPh, (III)	77	13.5	C ₆ H ₅
260	91	$C_{15}H_{16}S_2$	55	50	C ₄ H ₇
183	5	$C_9H_{11}S_2$	45	36.5	CHS
151	84.5	C9H11S			
150	48	C9H10S	PhS(C	(H ₂) ₁₂ SPh	, (VI)
149	34	SوHوC	386	8.6	$C_{24}H_{34}S_2$
137	16.5	C8H9S	277	14.5	C ₁₈ H ₂₉ S
135	61	C ₈ H ₇ S	221	0.2	$C_{14}H_{21}S$
123	100	C7H7S	193	2	$C_{12}H_{17}S$
110	39	C ₆ H ₆ S	179	1	$C_{11}H_{15}S$
109	82	C ₆ H ₅ S	169	2	$C_{12}H_{25}$
105	15	$C_3H_6S_2$	165	3	$C_{10}H_{13}S$
91	26.5	C_7H_7	151	1	C ₉ H ₁₁ S
77	47	C ₅ H ₅	137	5.5	C ₈ H9S
65	42	C ₅ H ₅	135	2.5	C_8H_7S
51	33.5	C ₄ H ₃	123	62	C7H7S
45	98	CHS	110	100	C ₆ H ₆ S
			109	18.5	C ₆ H ₅ S
Ph5(C	H_2 J_6 SPh,	(\mathbf{IV})	97	10.5	C_7H_{13}
302	41.5	$C_{18}H_{22}S_2$	91	3 10	C_7H_7
193	67.5	$C_{12}H_{17}S$	65 77	18	C_6H_{11}
192	39	$C_{12}H_{16}S$	60	545	
179	1.2	$C_{11}H_{15}S$	55	54.5	C ₅ H ₂
105	0.7	$C_{10}H_{13}S$	45	18	CHS
101	3.3	C9H11S	75	10	
13/	ð		cis-Ph	ѕсн≂сна	Ph (VII)
130	У 7		244	47	
100	/	CH7S	244	4/	$C_{14}H_{12}S_2$
123	675		218 166	13	$C_{12}H_{10}S_2$
100	U/.3	C U S	100	22	
01	30 7	C-11	123	44 20	C H 5
71	/	$C_7 \Pi_7$	154	30	U8H6S

TABLE I.^a Fragmentation Patterns of Phenyl-Substituted Dithioethers.

TABLE I. (Continued)

m/e	1%	Fragment	m/e	I%	Fragment	
cis-PhSCH=CHSPh, (VII)			o-C ₆ H ₄ (SPh) ₂ , (VIII) (cont.)			
(cont.)		139	11.5	CeHaSa	
123	19	C7H9S	109	5	C ₆ H ₅ S	
110	89	C ₆ H ₆ S	108	7	C ₆ H ₄ S	
109	100	C ₆ H ₅ S	77	8	CéHe	
91	23	C_7H_7	65	4.5	СеНе	
77	27	C ₆ H ₅	51	8.5	C ₄ H ₂	
65	36	C ₅ H ₅	45	2	CHS	
51	24	C ₄ H ₃	10	2	end	
45	28	CHS				
			cis-Ph	CH_SCH=	CHSCH ₂ Ph	
$o-C_6H_4(SPh)_2,(VIII)$			(IX)	en įsen-	enbenzin,	
294	100	C18H14S2	272	15	CreHreSo	
260	3	C18H12S2	181	15	CoHoSo	
217	3.5	C ₁₂ H ₉ S ₂	123	1.5	CaHaS	
216	6.5	C12 H8 S2	121	1	C-H-S	
185	61	C ₁₂ H ₀ S	91	100	Calla Calla	
184	98.8	C12H8S	77	1 5	C/H/	
154	2.5	C12H10	65	13.5		
152	14.5	C12He	55	3	CaHa	
140	5	$C_6H_4S_2$	45	5	CHS	

^aPeaks for ³²S only are quoted and relative intensities are uncorrected.

Scheme I.

PhSSPh; indeed, except for the parent ions, disulphur fragments are not of any importance.

The dithioether with the vinyl backbone, (VII), shows a base peak of PhS^{+} and major peaks corresponding to the parent, PhSSPh, PhSCH=CH₂,

TABLE II. Fragmentation Patterns of Methyl-substituted Dithioethers.

m/e	I%	Fragment	m/e	I%	Fragment
MeSCH ₂ SMe, (X)			o-C ₆ H ₄ (SMe) ₂ , (XIV) (cont.)		
108	58.5	$C_3H_8S_2$	155	26	$C_7H_7S_2$
93	2	$C_2H_5S_2$	154	100	$C_7H_6S_2$
61	100	C ₂ H ₅ S	153	14	$C_7H_5S_2$
48	13.5	CH ₄ S	140	27	$C_6H_4S_2$
47	9.5	CH ₃ S	124	46	C7H8S
46	4	CH ₂ S	123	8	C7H7S
45	-	CHS	122	8	C7H6S
				16	C7H5S
MeSC	H_2CH_2SM	le, (XI)	110	6	C ₆ H ₆ S
122	75	$C_4H_{10}S_2$	109	40	C ₆ H ₅ S
120	11	$C_4H_8S_2$	108	16.5	C ₆ H ₄ S
107	1	$C_3H_7S_2$	91	95	C_7H_7
92	3	$C_2H_4S_2$	78	33	C ₆ H ₆
75	43	C ₃ H ₇ S	77	45	C ₆ H ₅
74	21.5	C ₃ H ₆ S	65	35	C ₅ H ₅
61	100	C ₂ H ₅ S	45	98	CHS
59	14.5	C ₂ H ₃ S			
48	6	CH₄S	<i>о-</i> С ₆ Н	$I_4(NH_2)(S$	Me), (XV)
47	23	CH ₃ S	139	100	C7H0SN
46	18.5	CH ₂ S	138	9	C7H8SN
45	23	CHS	136	7	C7H6SN
			125	18	C ₄ H ₇ SN
MeSC	НаСНаСН	SMe. (XII)	124	99.8	CeHeSN
1 36	100	C H S	109	6.5	CeHeS
121	81.5	$C_5\Pi_{12}S_2$	108	10	CeHeS
106	01.5	C U S	97	28	C _c H _c S
100	4.5	C 11 S	96	11	CAHAS
07	4.5		03	25	C ₄ H ₋ N
00 75	34	C_4H_8S	92	2 <i>3</i> Q	C ₆ H ₇ N
75	19	C3H7S	91	14	C-H-
73	88	C ₃ H ₅ S	80	78	$C_7 H_7$
47	03	C_2H_5S	77	13.5	C ₂ H ₂
4/	21	CH ₃ S	,,	15.5	C6115
40	13	CH ₂ S	o-H-N	IC. H. SCL	LCH-SC-
45	22.5	CHS	$o-H_2NC_6H_4SCH_2CH_2SC_6-$		
	SCU-CUSMA (VIII)		226	12-0, (11)	,
cis-meSCH=CHSMe, (XIII)			276	19	$C_{14}H_{16}S_2$
120	100	$C_4 H_8 S_2$			N ₂
105	49	$C_3H_5S_2$	152	15	$C_8H_{10}SN$
103	6.5	$C_3H_3S_2$	151	23.5	C ₈ H ₉ SN
90	5	$C_2H_2S_2$	138	1.5	C ₇ H ₈ SN
89	5	$C_2 HS_2$	136	6	C ₇ H ₆ SN
73	7	C ₃ H ₅ S	125	15.5	C ₆ H ₇ SN
72	10	C ₃ H ₄ S	124	100	C ₆ H ₆ SN
71	10	C3H3S	97	5	C ₅ H ₅ S
61	99.9	C ₂ H ₅ S	96	2	C ₅ H ₄ S
59	19.5	C ₂ H ₃ S	93	3	C ₆ H ₇ N
58	30.5	C_2H_2S	92	2	C ₆ H ₆ N
57	14	C ₂ HS	91	2.5	C_7H_7
48	12.5	CH ₄ S	80	24	C ₅ H ₆ N
47	26	CH ₃ S			
46	18.5	CH ₂ S	o-H2NC6H4SCH=CHSC6		
45	71.5	CHS	H4NH2-0, (XVII)		
			274	12	C ₁₄ H ₁₄ S ₂ -
<i>о-</i> С ₆ Н	4(SMe)2,	(XIV)			N ₂
170	61	$C_8 H_{10} S_2$	150	31.5	C ₈ H ₈ SN
168	4	C ₈ H ₈ S ₂	149	100	C8H7SN

TABLE II. (Continued)

m/e	I%	Fragment	m/e	I%	Fragment
— <i>о</i> -Н ₂ N	IC6H4SCH	I=CHSC ₆ H ₄ N	H2-0, ()	(VII) (con	t.)
136	24.5	C7H6SN	97	6	C5H5S
125	15.3	C ₆ H ₇ SN	93	5	C ₆ H ₇ N
124	13	C ₆ H ₆ SN	91	3.5	C ₇ H ₇
117	19.5	C ₈ H ₇ N	80	21	C ₅ H ₆ N

PhSC=CH – totally different behaviour from that of the dimethylene analogue. The replacement of phenyl by benzyl, (IX), produces a very simple fragmentation pattern dominated by the ion of m/e = 91, PhCH₂⁺, weak peaks due to the parent, C₅H₅ and CHS, but no other peaks of any importance.

The completely aryl-substituted, $o-C_6H_4(SPh)_2$, (VIII), exhibits a simple fragmentation pattern (Scheme II), which shows some resemblance to that [1] of the corresponding diphosphine, $o-C_6H_4(PPh_2)_2$, especially in forming heterocyclic species such as $C_{12}H_8S$ and $C_{12}H_8S_2$.

Scheme II.

Methyl-substituted Dithioethers

The principle ions in the mass spectra of bis-(methylthio)methane,* (X), 1,2-bis(methylthio)ethane, (XI), 1,3-bis(methylthio)propane, (XII), *cis*-1,2-bis(methylthio)ethylene, (XIII), and *o*-phenylenebis(methylthioether), (XIV), are shown in Table II.

^{*}Ligands (X), (XI), (XII) can also be named 2,4-dithiapentane, 2,5-dithiahexane and 2,6-dithiaheptane, respectively.

The fragmentation modes of the methyl-substituted ligands are more complex than their phenyl analogues, but do show the predominant route to be via α - and β -cleavage at the sulphur. For (X) and (XI) the base peak is $m/e = 61 (C_2H_5S^{+})$, whilst for (XII) the base peak is the parent ion. The main fragmentation routes of XII are shown in Scheme III.

Scheme III.

The fragmentation of the vinylic dithioether, (XIII), is complicated. The parent ion is once again the base peak, with $m/e = 61 (C_2 H_5 S^{+})$ of almost the same intensity (1 = 99.9%); in this case this ion must be produced by a rearrangement

The fragmentation of o-C₆H₄(SMe)₂, (XIV), Scheme IV, is similar to that of the tetrathioether, $o-MeSC_6H_4SCH_2CH_2SC_6H_4SMe-o$, the base peak being the cyclic ion (XVIII). The importance of ions of m/e = 91 ($C_7H_7^+$) and 45 (CHS⁺) should be noted.

Sulphur-Nitrogen Ligands

o-Methylthioaniline, (XV), and the diaminedithioethers (XVI) and (XVII) exhibit interesting fragmentation patterns. All exhibit parent ions and this is also the base peak for (XV) the α -cleavage of the S-alkyl linkage followed by the formation of

Scheme V.

various S,N species, probably cyclic ions, is the main fragmentation route, Scheme V. The fragmentation of (XVII) is similar, the base peak is m/e = 149, (XIX), and a strong ion at m/e = 117 is probably (XX), which do not occur in (XVI) or (XVII).

For (XV) the main route is via m/e = 124, $o-C_6H_4$ -(NH₂)S⁺, and m/e = 124, $o-C_6H_4$ (NH₂)SH, which lose HCN and S, respectively, to give m/e = 97 and 93. The ion m/e = 80, C_5H_6N , is prominent in all three spectra.

References

- 1 W. Levason, C. A. McAuliffe and R. D. Sedgwick, J. Organomet. Chem., 84, 239 (1975).
- 2 W. Levason, C. A. McAuliffe, S. G. Murray and R. D. Sedgwick, J. Organomet. Chem., 105, 195 (1976).

- 3 W. Levason, C. A. McAuliffe, R. V. Parish, I. E. Niven and P. D. Randall, J. Organomet. Chem., 125, 209 (1977).
- 4 W. Levason, C. A. McAuliffe and R. D. Sedgwick, J. Organomet. Chem., 122, 351 (1976).
- 5 C. A. McAuliffe, S. G. Murray and R. D. Sedgwick, Inorg. Chim. Acta, 14, 49 (1975).
- 6 J. D. Madsen, C. Nolde, S. O. Lawesson, G. Schroll, J. H. Bowie and D. H. Williams, J. Chem. Soc. B, 951 (1966).
- 7 S. Sample and C. Djerrasi, J. Am. Chem. Soc., 88, 1937 (1966).
- 8 J. H. Bowie, S. O. Lawesson, J. D. Madsen, C. Nolde, G. Schroll and D. H. Williams, J. Chem. Soc. B, 946 (1966).
- 9 T. H. Shuttleworth, Appl. Spectros., 18, 78 (1964).
- W. Levason, C. A. McAuliffe, F. P. McCullough and A. M. Werfalli, *Inorg. Chim. Acta*, 25, 247 (1977).